Probabilistic computation by neuromine networks.
نویسندگان
چکیده
In this paper, we address the question, can biologically feasible neural nets compute more than can be computed by deterministic polynomial time algorithms? Since we want to maintain a claim of plausibility and reasonableness we restrict ourselves to algorithmically easy to construct nets and we rule out infinite precision in parameters and in any analog parts of the computation. Our approach is to consider the recent advances in randomized algorithms and see if such randomized computations can be described by neural nets. We start with a pair of neurons and show that by connecting them with reciprocal inhibition and some tonic input, then the steady-state will be one neuron ON and one neuron OFF, but which neuron will be ON and which neuron will be OFF will be chosen at random (perhaps, it would be better to say that microscopic noise in the analog computation will be turned into a megascale random bit). We then show that we can build a small network that uses this random bit process to generate repeatedly random bits. This random bit generator can then be connected with a neural net representing the deterministic part of randomized algorithm. We, therefore, demonstrate that these neural nets can carry out probabilistic computation and thus be less limited than classical neural nets.
منابع مشابه
Load-Frequency Control: a GA based Bayesian Networks Multi-agent System
Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...
متن کاملLPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring
Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...
متن کاملProbabilistic Contaminant Source Identification in Water Distribution Infrastructure Systems
Large water distribution systems can be highly vulnerable to penetration of contaminant factors caused by different means including deliberate contamination injections. As contaminants quickly spread into a water distribution network, rapid characterization of the pollution source has a high measure of importance for early warning assessment and disaster management. In this paper, a methodology...
متن کاملEnergy-Aware Probabilistic Epidemic Forwarding Method in Heterogeneous Delay Tolerant Networks
Due to the increasing use of wireless communications, infrastructure-less networks such as Delay Tolerant Networks (DTNs) should be highly considered. DTN is most suitable where there is an intermittent connection between communicating nodes such as wireless mobile ad hoc network nodes. In general, a message sending node in DTN copies the message and transmits it to nodes which it encounters. A...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bio Systems
دوره 58 1-3 شماره
صفحات -
تاریخ انتشار 2000